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ABSTRACT

i - The storage and retrieval of patterns in a Hopfield-like Parallel Distributed Mem-

ory is investigated experimentally with a view toward increasing its storage capacity.

The first two Chapters give an overview of distributed ;ijm1Cries and in particular

the Hopfield distributed memory. This is followed by a Chapter which experimen-

* tally identifies the basic storage capacity of the original Hopfield memory when

using text patterns.

.This dissertation then experimentally investigates new and untested methods to

increase the storage capabilities of a Hopfield-like neural net. Increasing the storage

capacity by using the continuous-valued Hopfield memory is explored in Chapter 3

and the impact on capacity of data representation is experimentally investigated in

Chapter 4. We then focus on new ways of storing data (changing the interconnect

strengths) including in Chapter 7 developing a new method called Modifying the

Energy Contour or MEC. In addition, this Chapter also outlines how to increase

error-tolerance through the use of noisy patterns. ... - I r crrC , 1K
'The Hopfield distributed memory is then contrasted to another intelligent mem-

ory subsystem based on more of a traditional computer technology. In Chapter 8

we see that traditional computer technology using data-parallel techniques has a

greater storage efficiency than possible with current Hopfield-like distributed mem-

ories. The design of this data-parallel memory is based in part on what is learned

experimentally from the preceding Chapters on the Itopfield-like distributed mem-
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or.This fast data-parallel approach also supports retrieval or data patterns with

noisy inputs although it does not have all the functionality of the Htopfield-like

distributed memory.
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The following three results are the most significant outcomes of this

dissertation. Experimentally, it was determined that:

* The llopfield memory would support new methods for adaptation or learning

of patterns and that recall was done by a parallel, nearest-neighbor pattern

search procedure.

* The storage capacity of the Hopfield-like memory can be improved but the

storage efficiency is far less than data-parallel based associative memories. In

addition, experiments show that:

- the way in which data is represented can greatly impact storage capacity

and error-tolerance in Hopfield distributed memories,

0 - a single layered fully connected lIopfield-like memory can have more

than n stored stable states when using the Modified Energy Contour

storage process to develop the interconnect strenghts (where n is the

dimensionality of stored patterns), and

- when storing 200 randomly generated 96-bit balanced coded patterns,

34% of the recall patterns with up to 5% error were still completely cor-

rectable when using the MC process and training with noisy patterns.

A data-parallel implementation of the Nearest-Neighbor Rule provides for

fast parallel search of pattern space and can support software-based learning

* procedures. This implementation can then behave as a Parallel Associative

Memory dealing with inexact data in the recall key.
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